Multiscale filter-based hyperspectral image classification with PCA and SVM
نویسندگان
چکیده
منابع مشابه
Multiscale Superpixel-Based Sparse Representation for Hyperspectral Image Classification †
Recently, superpixel segmentation has been proven to be a powerful tool for hyperspectral image (HSI) classification. Nonetheless, the selection of the optimal superpixel size is a nontrivial task. In addition, compared with single-scale superpixel segmentation, the same image segmented on a different scale can obtain different structure information. To overcome such a drawback also utilizing t...
متن کاملDWT and PCA Based Image Enhancement with Gaussian Filter
A new satellite image contrast enhancement technique based on the Discrete Wavelet Transform (DWT) and Principal Component Analysis has been proposed. By the use of discrete wavelet transform, the input image decomposed into four frequency sub-bands and estimates the eigen values and eigen vectors (PCA) of the low–low subband image and reconstructs the enhanced image by applying inverse DWT. Th...
متن کاملTexture Based Hyperspectral Image Classification
This research work presents a supervised classification framework for hyperspectral data that takes into account both spectral and spatial information. Texture analysis is performed to model spatial characteristics that provides additional information, which is used along with rich spectral measurements for better classification of hyperspectral imagery. The moment invariants of an image can de...
متن کاملMultiscale Union Regions Adaptive Sparse Representation for Hyperspectral Image Classification
Sparse Representation has been widely applied to classification of hyperspectral images (HSIs). Besides spectral information, the spatial context in HSIs also plays an important role in the classification. The recently published Multiscale Adaptive Sparse Representation (MASR) classifier has shown good performance in exploiting spatial information for HSI classification. But the spatial informa...
متن کاملAn automatic hyperspectral image classification method based on Subspace Partition and SVM
Since the traditional Support Vector Machine (SVM) algorithm has high classification accuracy at the expense of huge training samples, an automatic hyperspectral image classification method based on subspace partition and SVM (ASP-SVM) algorithm is proposed. In this proposed method, the endmembers were extracted as the representative samples for each class, and a coarse classification result is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Electrical Engineering
سال: 2021
ISSN: 1339-309X
DOI: 10.2478/jee-2021-0006